J McMahon
EDEM®626 Assessment 3

SOFTWARE ENGINEERING: CONTEXTUALISING COMPUTER SCIENCE

Software engineering is an important and highly relevant topic for students to study at high school.
Many students, along with the wider public, believe that developing software is all about writing
code. This leads to the stereotypical misconception that jobs in the information technology sector
are reserved for “geeky” programmers, and that those jobs have a narrow focus lacking in social
interaction and purpose. Females especially want to pursue career pathways where they see
relevance and connection to real world issues. According to Rane Johnson-Stempson (2014),
Microsoft Research, Education & Scholarly Communications Principal Research Director:

As | speak with young women around the world, | continue to find that
their disinterest in computing stems from a lack of familiarity with its
exciting and impactful career possibilities. The students | talk to almost
invariably voice a desire for a vocation, not just a career. They want work
that is socially meaningful...We need to show young women that
computer science is the field to be in if they want to make an impact on
society and help people. We need to make them realize that the latest
advances in improving healthcare, protecting the environment and
upgrading manufacturing have come from technological innovations.
(para. 3, 6)

So how can the study of software engineering help students (especially females) overcome these
misconceptions? Software engineering situates programming within the larger context of problem
analysis, design and testing of a software product to ensure it meets the needs of users and wider
stakeholders. Through studying software engineering, students can see that the actual goal of
software development is to bring benefit to the end users and the wider community stakeholders.
Furthermore, the study of software engineering highlights the critical role that interaction with users
and clients, as well as other team members, plays in software development and thus dispels the
misconception that is a socially isolated field.

As suggested in the Software Engineering Chapter of the Computer Science Field Guide (Bell &
Morgan, 2014), the concepts are difficult to teach without real world case studies. This topic
presents the ideal opportunity for guest speakers from the information technology sector to visit the
classroom and discuss their software development process, or for students to visit a company to
gain first hand experience. In either case, students are exposed not only to software engineering as
a topic for an external report, but also real life examples of software development in context and
possible career pathways.

Finally, software engineering fits very well within a program of teaching and learning at Level 3 NCEA
that has a project development and NCEA Scholarship focus. Students can model software
engineering practices within their own project development, which supports internal assessment
opportunities within the NCEA Generic Technology Achievement Standards Framework and the
Technology Scholarship Portfolio Report. There is a strong correlation between software engineering

J McMahon
EDEM®626 Assessment 3

and the NCEA Generic Technology Internal Achievement Standards, thus this topic underpins a level
3 Digital Technologies programme with a focus on developing stakeholder-oriented projects:

* Brief development — determining functional requirements from different stakeholder
groups and non-functional requirements from the context considerations of the project
including the social and physical environment.

* Project management — researching project management methodologies, applying a project
management schedule

* Technological modelling — risk mitigation through determination of requirements, balancing
competing and contestable factors and iterative development

* Prototyping — trialling, rigorous testing and iterative development

OVERVIEW: RESOURCES AND IMPLEMENTATION

In order to develop both my own and my students’ understanding of the topic of software
engineering, two main resources were utilised. The Software Engineering chapter of the Computer
Science Field Guide (Bell & Morgan, 2014) was used to provide the topic framework and explanation
of the key concepts. Head First Software Development (Miles & Pilone, 2008) was used to provide
further examples with diagrams and illustrations of the key concepts as well as review activities.
Various other Internet sites were used for reference or clarification of terminology, which are
referred to throughout this report.

In addition to these resources, a three-day immersion field trip to visit software development
companies and learn about their processes first-hand was a key experience for understanding the
theory and terminology in context. The students were able to spend a day at Orion Health in
Christchurch learning about Agile methodology and working with their cross-functional SCRUM
teams. This experience was crucial to understanding the theory presented in the other resources.

The students were inspired by the field trip and could see the benefits of implementing an Agile
methodology in their own project development. Thus, the result of the field trip was a ‘team
decision’ to turn our Level 3 Digital Technology class into an ‘Agile Classroom’. The goals for
implementing an ‘Agile Classroom’ are as follows:

* Students will develop their project briefs and final outcomes in an iterative and authentic
manner, following the Agile methodology, which will improve the quality of the projects and
NCEA Scholarship portfolio.

* Students will manage their development timeline more effectively via the use of SCRUM
boards and visual planning.

e Students will be able to write authentic reports for the NCEA computer science external,
reflecting on their process in conjunction with what they have seen implemented in the real
world.

* Students will be motivated to pursue software engineering as part of their tertiary study.

In the remaining sections of this paper, the key concepts of software engineering will be discussed,
resources analysed and details of our classroom implementation will be highlighted.

J McMahon
EDEM®626 Assessment 3

SOFTWARE ENGINEERING: KEY CONCEPTS

MANAGING COMPLEXITY

Software projects in the real world are large and complex and are generally developed by teams, as
it is impossible for any single person to understand the entire problem or code and test the solution.
A structured methodology for development is necessary to manage the complexity of the software
and to ensure it meets the requirements of the stakeholders, is delivered on time and within budget.
Without a structured process for development of software, the probability and severity of risk for
project failure and bugs in the software increases dramatically.

The introductory material of the Software Engineering chapter of the Computer Science Field Guide
(Bell & Morgan, 2014) provides excellent examples, including two video segments, to help students
understand the complexity of large software projects and the scope and severity of the loss that can
occur when software projects fail. The Field Guide suggests that students can learn a great deal as
to why it is crucial to have sound software engineering practices from looking into projects that have
failed. Website links are provided to relevant articles about software failures that students and
teachers can explore for discussion. In addition to the examples suggested within the chapter, the
NovaPay failure is a relevant example for New Zealand students (and their teachers). There are
many available on-line discussions and articles that focus on this topic, such as, Eight ways Novapay
failed (Gauld, 2013) or Novopay 'failure' reduced risk hopes (Gibb, 2013).

It is important for students to look at these large-scale examples of software development projects,
both successful and failed implementations, as the scope of their own development is quite limited.
However, many of the key principles of software engineering apply no matter the scale of the
development and students can adapt these principles to their own practice. An example from Head
First Software Development (Miles & Pilone, 2008), in relation to stakeholder consultation and
iterative development, illustrates this point:

You might only be a development team of one, but when it comes to your
project there are always, at a minimum, two people who have a stake in
your software being a success: your customer and you. You still have two
perspectives to take into account when making sure your software is on the

right path, so iteration is still really helpful even in the smallest of teams.
(p. 12)

SOFTWARE DEVELOPMENT STAGES

Software engineering models comprise of the same general stages: analysing requirements,
designing the software, coding/implementation, and testing. The software process or methodology
that is followed to work through the stages varies, however there are two main categories of
methodologies: linear and iterative. Linear methodologies work through each stage until
completion, whilst iterative methodologies work through the stages in cycles. It is generally
accepted that a purely linear approach is not responsive enough in software development and that
iterative approaches help to mitigate the risk of project failure. Two specific implementations of
methodologies will be discussed later in this report.

J McMahon
EDEM®626 Assessment 3

Requirements Analysis

A crucial aspect of the software engineering process (or any engineering process) is to ascertain the
functional and non-functional requirements of the project before launching into the development of
the outcome. However, it is often difficult for the stakeholders to fully communicate their
requirements. Furthermore, different stakeholder groups may have conflicting requirements that
need to be negotiated so that the software suits a range of needs. The hardware that the software
is to run on and the physical environment it is situated within also need to be determined as part of
the analysis. However, the introduction of new technology during the software development may
lead to changes in these requirements. Section 16.2 of the Computer Science Field Guide (Bell &
Morgan, 2014) discusses these key concepts in further detail with examples and contexts that high
school students would relate to and understand.

16.2.1. PROJECT: FINDING THE REQUIREMENTS from the CS Field Guide (Bell & Morgan, 2014) would
be a useful guideline for students who are developing their own project brief and need to research
the requirements of a variety of stakeholders. NCEA Achievement Standard 91068, Undertake brief
development to address an issue within a determined context, requires students to develop a project
brief and specifications that reflect on-going consideration of a range of stakeholders’ views and
needs. As part of the brief development process, students are also required to analyse the social
and physical environment of the intended outcome and the wider context considerations.

Analysing the stakeholders’ needs helps the students to develop the functional requirements; whilst
analysing the social and physical environment along with the relevant context considerations helps
the students to determine the non-functional requirements.

In our classroom implementation, as part of the brief development assessment, students were given
the task of researching the project context and stakeholder issues to develop an initial set of project
requirements.

An excerpt from the task and sample student responses are shown below:

Research (through interviews, questionnaires, on-line research, etc.) the context and issue in
more detail.

1. What is the current situation within the context? What issues are there that need to be
resolved? What needs or opportunities for the users reside in this issue?

2. What is the social environment in which the solution will be situated -- the school, the
hostel, a sports club, etc.?

3. Who are the key and wider stakeholders within this environment? Think not just of the
main “clients” but also the users and community who will be affected by the solution you
develop.

4. What is the physical environment? What hardware/software will be used to create and
access your solution? Will it be public on the WWW or local to an intranet within the
school or hostel?

Create an A3 poster for your SCRUM board that summarises your project idea. Include a ‘conceptual
statement’ that clearly communicates what will be developed, for whom, where it will be situated,
and why it should be developed. You may break this down for your poster into headings “What”,
“Who”, “Where”, “Why”.

J McMahon
EDEM®626 Assessment 3

Figures 1 & 2 - Each student is using SCRUM board as visual project management method. The A3 posters were a

suggestion from Jan Behrens, Product Development Director Orion Health, during our visit.

Who are the | What are their
stakeholders | issues/what they need

—,

How they currently deal
with these issues

Why these methods could and
should be improved

More effective
method of
advertising the
organisation to
the public.

Away in which the
public can contact
the organisers with
, any personal

: queries about the

Squadron advertises
once a year in the
newspaper. Posters
are also put up in
local schools.
Currently there is no
way that the public
can contact the
squadron organisers
or group.

Advertising through
Newspaper and on posters
is bad for the environment
as it uses a lot of paper, and is
not easily accessible for all
members of the public.

The squadron needs to be
easily contactable by the
public.

‘Squadron
|aTc

i
lets who Accessible

attend No42

information about
| upcoming

E events/camps,

) regarding to when
1 and where the

events are being

held, and the gear

list for any camps.

Paper copies of
information about
upcoming events,
camp gear lists and
camp permission
slips are handed out
to cadets to take
home. Some
messages regarding
important upcoming
events are also put
on the No.42
Squadron ATC
Facebook page.

Wastage of paper, and
inefficient use of time as
leaders have to hand type and
print all information slips for
every single camp/event. Also
handing out information on
slips to cadets has proven to
be an unreliable method at
getting gear lists, camp dates
etc. home to parents. (liable to
lose hand printed paper
copies)

Not all parents of cadets uses
Facebook and so find it
difficult to acquire
information through this
method of online
‘communication from the

Efficient access to
information
concerning when
rents.
association

Emails are sent to
parents of cadets to
remind them of
parent association
meetings.

Inefficient use of time for
the organisers having to hand
type and send emails
reminding parents of the next
up coming meeting.

Why
Creating an updateable dynamic website that advertises No.42 Squadron to the public as
well as allows the public to contact the organisers through an email link/in built system,
and also displays information about upcoming events for both cadets and parents of

cadets, is beneficial to the stakeholders because:
* Itwill minimise the amount ofltime and efforgthat the organisers would spend on
tedious tasks like typing and printing camp/ebent slips and hand typing and

sending reminder emails about upcoming meetings for parents.

As printing letters to be handed out requiresjioney{for the ink and paper - which
is an administration cost of the squadron or¥ tost effective to have
information displayed on a website accessible at home rather than on paper sheets
to be taken home. F advertisement in also comes at a cost
to the squadron’s finances.

Printing information on paper and advertisement on posters around schools is not

only costly for the squadron’s administration finances but also bad for the
Jenvironment{vith a large amount of paper usage. Advertisement and
comniunicating information on a website is a better alternative particularly when

taking into consideration the impact that printing and wasting paper has on the

ment with contact details and displaying information slips on a

Sac
newspapers or posting information on a Facebook page. This will make
advertisement for the squadron more effective, and also communication between
the members (and parents of members who may not have Facebook) of the
squadron more efficient.

meetings are being
held.

ere
i e community that will be using this
directly involyed with No.42 Squadron - particularly the.

When
From the stakeholders there is no specific deadline for the completion of this

outcome, the faster th is produced ang i
the quicker the stakeholders can start managing and adverlllsing the co‘rin):r‘::):ril::n::s: e
information in an efficient time-saving less costly manner. | am aiming to have this
proposed website up and running for Squadron No.42 ATC before the end of term 3 this
year,as this project must be completed before this deadline in order to be able to be
submitted as an assignment that counts towards NCEA.

B *awwzre:ﬂe outcome will be situated on thWﬁe to this

being easily accessible for directly stated stakeholders (cadets, organisefs etc) as well

as members of the public.
Software: Coded ir{TML, CSS, P| Sthlving the website a dynamic
aspect that enables it to be easily updateable by the mdnager of the site.

We are creating this eBook for Mrs. Anglin who isis
charge of the Columba College Centenary.
This eBook is going to be used by anyone who is at-
tending the Columba College Centenary in 2015. This
makes it a wide audience as anyone can come the
events at the Centenary and anyone who wants to
@ download it can. To make sure it is easy to use for ev-
/(),;]/ﬁ”({}y eryone, we will test it on many age groups. Because it is
4] a centenary, people of any ages may want to look at the
eBook, such as old girls of the school who could be el-
derly or have just left school or younger children in the
junior school. This means we have to make the book
easy to use for all ages, this means will will make it as
uncomplicated as possible while still making the design
interesting.

We are creating an eBook for the Columba College
2015 Centenary. Mrs. Anglin wants a book that would be
easy for anyone to go through and be able to read
about the last 100 years at Columba and look at inter-
esting photos and found around the school and in the
archives. The each of the 10 decades will be represent-
ed by recognizable buildings, events or uniforms from
that decade. This eBook will be used by anyone attend-

ing the centenary to look through the last 100 years of
Columba College. As it is an eBook, it will be working on
iPads to make it easily accessed by anyone, makes the
book easier to use and gives us the opportunity to use
sound and video clips throughout the book. The book
will be broken down into the 10 decades so the user can
easily look through each of the decades and read about
any of the major events in that decade and also look at
photos of the girls in their uniforms from that decade,
the campus and photos from other events. For the Cen-
tenary we are also creating posters for advertisement
around the school. The main things that will be shown in
the eBook are the changes that happened in that
decade to the school, this could be any changes to the
uniform, new buildings or campus changes or new prin-
cipals. We will also have photos of everyday life at Co-
lumba at the time so that old girls can remember what
Columba was like when they were here and girls at Co-
lumba now can see what it used to be like compared to
today. The book will mostly be images so the viewers
can get a visual picture of what the school used to be
like but small text passages will explain the images.
These posters will be created after the eBook so that we
can use the designs from the book for the posters for

How

We will create this eBook using iBooks author, which is
an application on our laptops. This application will allow
us to make a book with a main screen and lots of differ-
ent pages of the decades. We will be able to create a
format for the whole book for continuity through out the
decades. The App. allows us to put text and pictures on
the pages so the book can just be read or put in audio
and video for a more interactive eBook. We can use In-
Design to create the design formats for the different
pages so we will be able to create our own designs that
will best fit the book. For the posters we will also use In-
Design and Photoshop to create the designs we want.

When and Where

This eBook is to be finished before the end of term 3
along with the posters. The Columba College Centenary
is in March 2015 so any final changes have to be made
well before then. This eBook will be available at the
Centenary for people attending to look through and also
will be available online to buy from Amazon.

Columba College
Centenary eBook,

J McMahon
EDEM®626 Assessment 3

Regardless of whether or not students are developing their own brief and project specifications, it is
useful to introduce the concept of ‘User Stories’, to assist students in understanding how
stakeholder requirements are determined and provide a clear format for articulating these
functional requirements of the software. Chapter 2 of Head First Software Development (Miles &
Pilone, 2008) provides practice exercises and straightforward criteria for developing user stories,
such as, “a requirement should be written in the customer’s language and read like a user story: a
story about how their users interact with the software you’re building” (pg. 30). User stories do not
define methodologies for implementation, as the developer determines details of implementation in
the design phase. The user story deals with required functionality from a stakeholder’s perspective.
An illustration from the chapter 2 of the book that the students found very helpful is shown below:

User stories SHOULD...

[D ... describe one thing that the software needs to do for the customer. £—__ Think “bY the
‘ __—tustomers YK
\ I:] ... be written using language that the customer understands. < the tustomer

You should be \ This means the customer

able to cheek) D .. be written by the customer. < drives each one, no matter

each box for who sevibbles on @ notecard

each of your D ... be short. Aim for no more than three sentences.

user stories] fQ L

r
I N\ 3 user story is Jon

9

/ . ~—— w should vy an
| User stories SHOULD NOT.. —— LLiws,

‘l _ smaller useyr 5‘!’9!’155 {SCC
beal , e Pace G- ['

‘ ... be along essay. =— a9e 54 Lov tips)

‘l I:] ... use technical terms that are unfamiliar to the customer.

'\\1 B D ... mention specific technologies.

Figure 3 - User Stories (Miles & Pilone, 2008, pg. 39)
A typically used format of a user story is:
“As a <type of user>, | want <some goal> so that <some reason>". (Cohn, 2014, section 1)

This was the format that we were shown at Orion Health and the girls’ first introduction to the idea
was through developing their own user stories on the day of our visit. The user stories described
what they wanted to achieve from the day’s session and we used those to develop the day’s tasks.
In order to reinforce this learning, and gain first-hand experience with developing user stories for a
software project, the students have implemented this methodology in developing their project
briefs. After completing the research described above, the students developed ‘user stories’ for

their various stakeholders.

An example is shown below from a student who’s project focus is developing a dynamic website for

a local restaurant:

As a customer of the restaurant

I want to be able to narrow down dietary requirements (for vegetarian and
gluten free options)

So that | can determine if there is food that would agree with my diet.

J McMahon
EDEM®626 Assessment 3

When presenting the topic of requirements analysis, it is beneficial to introduce the concept
iterative development. When all requirements are gathered up front and no further stakeholder
consultation or research is completed until presentation of the final product, it leads to software
failures or time and budget overruns, as discussed previously. Iterative development is a key to
mitigating risk of failure. In chapter one of Head First Software Development (Miles & Pilone, 2008)
clear examples are provided of what can go wrong using the ‘Big Bang Approach’ to requirements
analysis. Review questions are also included that can aid students to think about how failure to
communicate clearly with stakeholders to obtain requirements iteratively can derail project success.
The chapter also provides explanations of iterative development processes with illustrations and
diagrams that are helpful for student understanding. Iterative development involves analysing
requirements, designing the software, coding, testing and obtaining stakeholder feedback on one
discrete segment of the software before proceeding on to the next. This provides a means for
ensuring feedback is obtained at regular intervals along to way in order to keep the software on
track with the client’s expectations.

In our class implementation of software engineering practices, the next step after determining the
user stories was to develop initial specifications and project tasks. Below is an example where the
student has broken one user story into overarching development tasks relating that that particular
story. She has built in tasks to iteratively consult with her stakeholders. This is only one portion of
the entire website, so a similar iterative process will occur for other user stories, until the entire site
it built and tested.

As a student user

I want to use an interactive app which
calculates nuclear fission/fusion reactions
based on input

So that | can earn a better understanding of
nuclear fission/fusion equations

Sketch design and format

Define input format and parameters
Design interactions

Consult stakeholders and edit

Create high-fidelity sketch of outcome
Consult stakeholders

Pseudocode outcome

Consult Mrs. McMahon, edit

Code JavaScript

Test outcome

The student has also analysed other factors to determine non-functional requirements:

One of the most important things to test for is the functionality and usability of the outcome on a variety of
different platforms and environments, including hardware, software and browsers. Testing must be repeated on
as many different combinations of hardware, platform and browser as possible, so that the reliability and
functionality of the product can be ensured for as wide a range of audiences as possible. If impossible to resolve,
at least an acknowledgement of this failure should be present in the form of error handling procedures, so that
the users are aware of the state they have reached and its cause.

» Testing
< Internet browsers on my laptop, e.g. Safari, Chrome, Firefox
< Online testing e.g. W3C markup validation service, Sauce labs
< Different hardware, e.g. Windows computers at school, Apple tablets, non-Apple tablets,
smartphones
< Uploading outcome to a temporary and restricted URL

J McMahon
EDEM®626 Assessment 3

Software Design

Once you have decided what your software needs to be able to do, you can
actually build it. But just blindly starting to program is likely to get you into
trouble; remember that most software is huge and very complex. You need
to somehow minimise the amount of complexity in software, otherwise it
will become impossible to understand and maintain for other developers in
the future. Software design is all about managing this complexity and
making sure that the software we create has a good structure. (Bell &
Morgan, 2014, Section 16.3, para. 1-2)

One of the key concepts in designing the structure of the software is subdivision or breaking the
software into smaller parts that can be built independently. Depending upon the size of the project
and the software process methodology, subdivision may occur within a team and/or across teams.
For example, within a cross-functional team, one person may be working on the user interface, while
other team members are working on the programming code, while yet others are working on the
database structure (with the testers working in tandem with the other members of a team). In very
large-scale projects, various teams may be working on different parts of the software in parallel.

The other key concept is abstraction, which refers to breaking the software into layers where each
layer only needs to know how to communicate with the layer contiguous to it, but not how it works.
Two excellent examples to illustrate abstraction are provided in the Computer Science Field Guide,
section 16.3. DESIGN: HOW DO WE BUILD IT? (Bell & Morgan, 2014). One example relates to the
computer’s layered system (hardware -> operating system -> application software) and another to
the layered system of Facebook (database-> logic -> user interface). Students who have completed
the NCEA Level 1 Digital Information external assessment, will be familiar with the computer’s
layered system whereby application software communicates with the operating system, which in
turn communicates with the hardware. The application layer does not know how to control to the
hardware as requiring all applications to know about every piece of hardware available would make
application software far too complex and cumbersome. Students who have created database driven
websites will be able to relate to the Facebook example. They would have created an interface
using HTML/CSS, programming logic using a language like PHP to access the data via queries using
MySQL or similar. Another means to explain the notion of abstraction to students is through simple
API’s, for example Google Maps. Many students may have used the Google Maps’ APl to embed a
map into a website. They will understand that they access the functionality of Google Maps, by only
understanding how to utilise the API, without understanding the logic behind how it works. In the
terminology of the Technology curriculum, abstraction deals with “black-boxed systems”.

J McMahon
EDEM®626 Assessment 3

16.3.1. PROJECT: DESIGNING YOUR SOFTWARE from the Computer Science Field Guide (Bell &
Morgan, 2014) could be used with the Generic Technology AS91610, Develop a conceptual design
considering fitness for purpose in the broadest sense. When developing a conceptual design, they
need to refer to the project specifications (requirements analysis) and design a conceptual model of
the different parts of their software. For example in a website with a database back end, students
should design the user interface, the database model, the logic layer for accessing data and
presenting it via the web interface.

Although students don’t generally work in teams, they can still break the development into
subdivisions; e.g. creating a database back-end for a website, creating a menu system, designing the
user-interface, and programming the logic. The student’s SCRUM board pictured below shows that
she has planned to manage her project development in subdivisions. As our class is following an
Agile methodology, the student is using an iterative process of analysis, conceptual design,
implementing and testing for each layer.

Testing

|

J McMahon
EDEM®626 Assessment 3

Testing

Software must be tested before being released as clients and end-users wouldn’t be happy with a
product that is full of bugs. Some bugs can be very severe and cause financial disaster, harm or even
death. Thus testing must be thorough, iterative and planned. Students can refer back to the
software failures discussions to appreciate the severe nature of risk that can occur through flawed
testing procedures.

There are a range of testing types that are carried out during the testing phase. Automated testing
can be programmed to run repetitively to find the probability of a bug occurring. Automated tests
can also be run after each programming update to determine if that update to the software has
caused a bug to occur. Manual testing is also necessary. It may be exploratory in nature and
completed by a member of the development team, or it may be carried out by an end-user.

Unit Testing is another key type of testing, meaning that as each discrete portion of the software is
being developed, it is tested as a unit to reduce the complexity of finding a bug in the final code.
Integration testing takes place once all the units have been tested to determine if all the parts work
together properly as a whole.

User Acceptance Testing is important to determine if the software is meeting user/stakeholder
expectations. Whilst unit/integration testing may reduce bugs, it doesn’t guarantee that the
software is what the user actually needs. Acceptance testing left until the last stage before product
release can be disastrous to software projects.

The activity provided in section 16.4 of the Computer Science Field Guide (Bell & Morgan, 2014) on
black-box testing is worth using with students, especially if they are completing a programming
implementation achievement standard. This will assist the students in thinking about some of their
own test cases, which they can implement during their own programming. Chapter 7 (pp. 237-242)
of Head First Software Development (Miles & Pilone, 2008) provides a good summary of box-box,
grey-box and white-box testing procedures. There is also an activity in which students can practice
writing black-box and grey-box testing procedures.

The group of students involved in this implementation project have a very sound foundation in
understanding the role, nature and importance of testing through their studies at Level 2 NCEA. In
our Digital Technology curriculum at Level 2, we focus on the external topic, Demonstrate
understanding of how technological modelling supports risk management (AS919358). Through
studying this topic, the students have participated in software testing run by local software
development companies and those companies have explained the vital role of testing to their
process, as well as their testing methodologies. One of the companies studied, ADInstruments
produces software for many hospitals, research institutes, and pharmaceutical companies, thus
incorrect results produced by the software could be devastating. Having students study the risk
management topic at NCEA Level 2 is an excellent foundation for understanding software
engineering practices at Level 3. If students have not studied this topic at Level 2, then a visiting a
local software company or having a company visit the class to make a presentation is invaluable.

When the class visited Orion Health this year, they had a workshop with one of the software testers
who explained their processes and led them through some sample testing exercises. The students

J McMahon
EDEM®626 Assessment 3

were also able to sit with a tester as she ran some automated testing procedures on an updated
piece of code.

Finally, we were provided with an example of unit test conditions within the Orion process (which
links directly to the user story):

As a Collector (Phlebotomist / Nurse)
I want to be able to easily search for collections
So that | can easily locate those collections | want to reprint labels for

Scenario: Collected orders are listed in the recent collections screen sorted by date
Given a patient has had two orders collected

When | open the recent collection screen for that patient

Then the collections for those orders are displayed

And the most recent collection is displayed first

Scenario: Labels are not available for reprint once the specimens have arrived at the lab
Given a patient has had an order collected

And the specimens from that collection have arrived at the lab

When | open the recent collections screen for that patient

Then the collection is not displayed

The next step for the students within our class implementation is to develop unit tests based upon
this model. Thus far, any ‘testing’ the students have done has been in the form of obtaining
stakeholder feedback on conceptual designs. Having completed the initial requirements analysis
and conceptual designs, most of the students are about to embark on sprint iterations that will
involve implementation and testing.

SOFTWARE PROCESSES

As discussed previously, the phases in software development (analysis, design, implementation and
testing) can be carried out in a linear or iterative process. Linear processes, usually termed Waterfall
or Big Bang approaches, were adapted from more traditional engineering disciplines, where it is not
always feasible or practical to build in an iterative fashion. However, in software development,
where flexibility and responsiveness are important, an iterative or Agile process is the usually the
better option. From our class visit to Orion and various readings on the topic, | developed the table
below to provide a summary of the differences between Waterfall and Agile methodologies.

\ Linear verses Iterative Development

Waterfall (Linear) Agile (Iterative)

Each phase in the process is completed before moving | Each phase is completed iteratively in a short sprint of

on to the next. 2-weeks.

There is little change once the project design phase is | Flexibility is the key, so that the software can be

complete. changed if there is a design issue or change to
requirements.

Software development work is completed in “silo” Software development is completed in cross-

environment. functional teams.

Coders and testers work in opposition. Coders and testers work in tandem.

J McMahon
EDEM®626 Assessment 3

As stated previously, the students decided as a “self-organising team” to become an ‘Agile

Classroom’ after our trip to Orion Health. The students were able gain insight, in only one day, into

the benefits of using an Agile methodology in the classroom for their Level 3 projects. They had

previous experience at Level 2 in creating a website for a real client under the Waterfall

methodology, which they have all now termed the “Waterfall of Tears”. This is due to the fact that

they experienced first-hand what happens when the final outcome is not shown to the client until

the end and the client then adds/modifies the requirements. Although the client was happy with

the final outcome and the students gained invaluable experience, they were determined not to

repeat the mistakes of the past.

WATERFALL
1T

Which project management style is right for you?

g

Establishing an effective framework fs rucial for any project to run smoothly.

But when you have EVAFEIZIN and XA planning methods to choose from,
how do you know which s the best for your project and team?

Heres alist of the pros and cons for each method to heb you decide.

Unlike the orderly stages
of a waterfall approach.

@ croovers poject eas to work
Y cratively andeffcenty

The project manag y project,your team and godls.
software

that lets you and your team set up your projects the way you want:
Luckily for you, Liq fit your needs.

= LiquidPlanner

To follow-on from our visit to Orion, | developed a task for
the students to help them organise their thoughts on
software processes. This task supports the students toward
providing evidence for the following assessments:

Internal - Brief Development (3.1) — Context Consideration of
Software Development Methodology

Internal - Project Management (3.2) — Undertake project
management to support technological practice

External - Software Engineering (3.44) - Demonstrate
understanding of areas of computer science

In the task, student were asked to perform further research
into Agile methodology and visual planning, as well as to
reflect upon their own experience developing a project using
Waterfall methodology and what they had learned at Orion
Health. | was very pleased by the level of understanding the
students have shown in their responses and | can ascertain
from these responses that the students are engaged with the
topic and are on-track for success in both in their internal
assessment projects and their external assessment reports. |
have included the task and three sample student responses
as appendices to this document.

The infographic at the right was a resource that the students
found helpful in evaluating Waterfall verses Agile
methodology. (Sussex, 2013)

J McMahon
EDEM®626 Assessment 3

CONCLUSION: THE AGILE CLASSROOM

The students have set up SCRUM boards around the classroom for visual project management,
which keeps them accountable to me and the other members of the class. They cannot hide behind
a computer and feign progress. They have created user stories to serve as their project backlog.
They are breaking down user stories into a series of tasks and are working iteratively to develop
their projects over 2-week sprints to complete those tasks. Each Friday, half of the class must do a
‘stand-up’ and report on their progress. As the overall ‘team leader’, | conference with each student
daily as to their progress toward their sprint goals.

As this is an on-going project, the final conclusion as to the success of our Agile Classroom
implementation will have to be evaluated at the end of the school year. However, as of the present
time, both the students and | feel it has been successful. The students are engaged with their
learning, and | am seeing quality and authentic requirements analysis and project management.
Their written work toward the external topic thus far demonstrates a solid understanding of the
principles. Furthermore, the visual nature of their SCRUM boards is intriguing to the other students
in different year levels and hopefully will motivate the younger students to continue on with Digital
Technology.

-

Sprint Goa? e-7 ‘esting Complete

J McMahon
EDEM®626 Assessment 3

BIBLIOGRAPHY

Bell, T., & Morgan, J. (2014, Jan 23). Software Engineering. Retrieved March 1, 2014 from Computer
Science Field Guide:
http://www.cosc.canterbury.ac.nz/csfieldguide/teacherguide23012014/ComplexityTractability.html

Cohn, M. (2014, NA NA). User Stories. Retrieved May 16, 2014 from Mountain Goat Software:
http://www.mountaingoatsoftware.com/agile/user-stories

Gauld, R. (2013, March 19). Eight ways Novopay failed. Retrieved June 1, 2014 from TVNZ:
http://tvnz.co.nz/seven-sharp/eight-ways-novopay-failed-5373279

Gibb, J. (2013, October 25). Novopay 'failure’ reduced risk hopes. Retrieved June 1, 2014 from Otago
Daily Times: http://www.odt.co.nz/campus/university-otago/278467/novopay-failure-reduced-risk-
hopes

Johnson-Stempson, R. (2014, May 22). Misconceptions Inhibit Talented Women from Tech Careers.
Retrieved June 2, 2014 from Microsoft Citizenship Asia Pacific:
http://blogs.technet.com/b/microsoft_citizenship_asia_pacific/archive/2014/05/23/misconceptions
-inhibit-talented-women-from-tech-careers.aspx

Miles, R., & Pilone, D. (2008). Head First Software Development. Sebastopol, CA, USS: O'Reilly Media.

Sussex, T. (2013, October 2). Agile vs. Waterfall: Which Project Management Style Is Right for You?
[Infographic]. Retrieved June 13, 2014 from LiquidPlanner:
http://www.liquidplanner.com/blog/agile-v-waterfall-which-project-management-style-is-right-for-
you/

J McMahon
EDEM®626 Assessment 3

